

National Conference on

Urban Mobility—Challenges, Solutions, and Prospects
IIT Madras

Real Time Traffic Counting System using Video Image Processing

Subhashis Chaudhuri, Tom V. Mathew, Gopal R. Patil

Contributing Staff: Athiq, Pradeep, Ajay

Indian Institute of Technology Bombay, Mumbai
July 13, 2012

Introduction

- One of the many projects sponsored by Department of Information Technology, Govt. of India, under INTRANSE
- Research Team:
 - Dept of Civil Engg., IITB: Prof. Tom V. Mattew,
 Prof. Gopal R. Patil, Prof. K V K Rao
 - Dept. of Electrical Engg., IITB: Prof. Harish
 Pillai, Prof. Subhashis Chowdhary
 - CDAC: Mr. V Muralidharan, Mr. Ravi Kumar, and Mr. Satheesh G

Introduction

- Goal: To develop a Real-Time system for Counting, Classifying, and Monitoring for Indian road traffic
- Objectives
 - Developing video-image based system to detect, count, and classify vehicles
 - Customizing the Loop detectors for Vehicle count and classification in Indian traffic condition which is heterogeneous and with limited lane discipline

Traffic Detectors

- Traffic detectors can be
 - In-roadways: embedded in the pavement or placed on the road surface (Eg. Inductance loops)
 - Over-roadways: above the pavement or alongside of the roadway (Eg. Video cameras)

- In-roadway detectors
 - Inductive loop detectors
 - Magnetic sensors
 - Pneumatic tubes
 - Piezoelectric sensors

Types of Detectors

- Over-roadway detectors
 - Video image processors
 - Microwave radar sensor
 - Infrared sensors
 - Laser radar sensors
 - Ultrasonic sensors
 - Radio frequency identification (RFID) tags
 - Global positioning system (GPS)

Inductive Loop Detector for Traffic Data

- The most commonly used sensors in traffic management applications
- Loops are installed in a variety of shapes such as squares, rectangle, circular, diamond and octagonal
- Output: presence, classification, speed, gap
- Pros: Mature, well understood technology, flexible design, insensitive to inclement weather, high accuracy
- Cons: Installation requires pavement cut, wire loops are subject to stresses of traffic and temperature, pavement repair can damage the loops

Change in Inductance

Loop inductance decreases when a car is on top of it.

Site Installation

- Installation at two pilot sites: Mulund and IITB campus (two-lane undivided roads)
- The main site is Jogeshwari-Vikroli Link Road (JVLR),
 the third most congested corridor in Mumbai

Main Site outside IIT Bombay Loop Configuration

Vehicle Counting Results

- Actual number of vehicles identified by analyzing the video: 490
- Number of vehicles undetected (no signature was generated): 25
 - All were two-wheelers
 - Vehicles passed in between two adjacent loops
- Number of vehicles counted by the system:
 474
- Counting Accuracy: 96%

Video Image Processing System

- Can output presence, classification, speed
- Pros: Monitors multiple lanes; Rich array of data available; Provides wide-area detection; easy to add or modify detection zones
- Cons: Performance affected by many factors including fog, rain, snow, vehicle shadows, day to night transition; high installation and maintenance cost

Field Installation

Camera Calibration

Video Processing for counting

Original image

Estimated foreground

After shadow removal

After morphology

Real time Vehicle Counting

Detection Window

Vehicle Count Results

	Actual Count	Count by algorithm	Accuracy %
Early Morning	236	273	84.3
Morning	622	699	90.8
Noon	597	531	88.9
Afternoon	613	554	90.4

^{*}Taken on an average of 15 minute duration

Vehicle Classification Results

	HMV	LMV	3-wheeler	2-wheeler
HMV	280	110	8	20
LMV	56	2604	66	32
3-wheeler	88	205	505	133
2-wheeler	15	50	18	490

Accuracy = 82.8 %

*Taken on an average of 1 hour duration

Real-time Traffic Analyzer and Classifier (RTrAC)

http://www.civil.iitb.ac.in/rtrac/#

RTrAC Interface

RTiAC

Real-time Traffic Analyser and Classifier

ABOUT GALLERY HOW IT WORKS RESOURCES FEEDBACK

Authorized Login

Snapshetoutale HT Powaiat2012-07-12115600

Legend

Criterts.	Category	Colour
Count = 675 (Low Teffic)	-	lawing men
675 - Count - 900 (Normal Taffic)		Brig ht Gold
900 - Count - 1125 (sad tum Teffici	c	Tellow
II25 - Count - 1250 (Migh Teffic)	D	See (Bill)
1850 Count - 1500 (Year Nigh Te file)		- maintenance (
Count : 1500 (Stop and Co Traffic)	¥.	ARREST

Time stamp	Vehicle Count (for 5 m iré	Two Wheeler	Three Wheeler	Light Vehicles	Heavy Vehicles	Average Velocity (km / fr)	Congestion State	
2012-07-12	254	6.2	62	160	0.0	24.0 %		
2012-07-12	290	50	60	116	04	25.65	(e	
2012-07-12	225	14	42	90	259	27.01		
20 12-07-12 11:05:16	29.7	42	61	144	50	20.00		
20 12-07-12 11:20:19	2.00	42	20	10 1	40	20,02	i e	
20 12-07-12 11:25:02	240	40	5.1	94	46	24.69		
20 12-0 7-12	217	9.0	5-4	79	5 1	27.60		
2012-07-12	26.6	44	46	197	89	26.24		
20 12-07-12 11:10:14	876	Ø 1	67	107	σı	29.29		
110502	921	59	5.0	140	5.5	26.5 0		
2012-07-12	40 (0.0	DSF	222	9.3	24.40	- 1	
20 12-07-12 10:55:00	e9 2	88	0.1	171	74	24.10		

*Disclaimer: RTrAC produces accurate results from

Features of RTrAC

- Real-time Vehicle Count
- Average Speed estimation
- Real-time Vehicle classification into four categories: 2-wheeler, 3-wheeler, light vehicles, heavy vehicles
- Public interface for processed data
- Report generation for day, week, and month long data

Report from RTrAC

Time (from)	Time (till)	Vehicle Count	Two-Wheeler	Three-Wheeler	LMV	HMV	Average Speed
2012-07-10 11:24:33	2012-07-10 11:30:00	207	27	15	128	37	28
2012-07-10 11:30:15	2012-07-10 12:30:00	3,571	707	354	1,810	700	15
2012-07-10 12:30:15	2012-07-10 13:30:00	4,064	824	442	1,960	838	14
2012-07-10 13:30:00	2012-07-10 14:30:00	5,338	1,084	530	2,686	1,038	15
2012-07-10 14:30:08	2012-07-10 15:30:00	6,104	1,193	603	3,016	1,292	15
2012-07-10 15:30:07	2012-07-10 16:30:00	5,916	1,205	649	2,884	1,178	16
2012-07-10 16:30:02	2012-07-10 17:30:00	6,492	1,299	1,079	2,927	1,187	27
2012-07-10 17:30:10	2012-07-10 18:30:00	6,570	1,272	1,115	3,058	1,125	25
2012-07-10 18:30:20	2012-07-10 19:30:00	2,856	534	507	1,224	591	27
2012-07-10 19:30:02	2012-07-10 20:30:00	1,158	225	217	509	207	32
2012-07-10 20:30:22	2012-07-10 21:30:00	2,731	449	507	1,299	476	27
2012-07-10 21:30:05	2012-07-10 22:30:00	7,201	1,300	1,327	3,262	1,312	24
2012-07-10 22:30:07	2012-07-10 23:30:00	421	82	72	180	87	34
2012-07-10 23:30:24	2012-07-11 00:30:00	195	38	28	94	35	36

Future Work

- Improve the algorithm to work in night and all weather conditions
- Include live video stream for public view
- Stop vehicle detection and accident detection
- Traffic jam prediction
- Lane closure and construction work detection
- License plate recognition system to be embedded in the algorithm
- Mobile alerts for public based on traffic predictions

Thank You

Questions ????

Comments ????